Las características de los huevos incubables y su relación con el peso vivo post-eclosión y el rendimiento de la canal de los pollos Ross × Ross 708

Durante la incubación de los huevos de las actuales estirpes de pollos de carne, es importante monitorizar el porcentaje de pérdida de peso medio diario con la finalidad de regular la duración del período de incubación, el peso vivo después de la eclosión, además de su repercusión sobre el rendimiento de la canal.


El periodo de cría de las actuales estirpes de pollos comerciales se ha visto reducido de forma importante, lo que ha dado lugar a un creciente interés por el desarrollo del pollito durante su fase embrionaria. Por este motivo, es importante comprender las relaciones existentes entre las variables fisiológicas previas y posteriores a la eclosión, ya que las características de los huevos incubables tienen un efecto potencial sobre el crecimiento de los pollos después de la eclosión y el rendimiento de las canales. Por este motivo, se investigó la asociación que existe entre el peso del huevo (SEW), la duración de la incubación (LI) y el porcentaje de pérdida de peso medio diario durante la incubación (MDPEWL) de huevos embrionados Ross × Ross 708 con el correspondiente peso vivo de los pollitos después de la eclosión y el rendimiento de las canales. Para ello, se distribuyeron al azar 60 huevos embrionados Ross × Ross 708 en cada una de las 8 bandejas de la incubadora. Se determinó la pérdida de peso individual de los huevos embrionados entre el día 0 y 10,5, 10,5 y 18,5, y 0 y 18,5 de incubación para el cálculo de la MDPEWL. Además, a los 18,5 días de incubación, los huevos embrionados se transfirieron a las nacedoras, donde se monitorizaron individualmente cada 12 horas para determinar la LI. Los pollitos eclosionados se alojaron en los respectivos corrales desde el día 0 (21,5 días de incubación) hasta el día 49 después de haber eclosionado. Se determinó el peso vivo de los pollitos como porcentaje del SEW al día 21,0 de incubación y al día 0 y 49 después de la eclosión, así como el sexo de las aves al día 49 después de su eclosión. Después del procesado comercial, se determinó el peso de la canal como porcentaje del SEW, y el peso de la canal, del paquete de grasa abdominal, de las alas, de los músculos de las pechugas y de los muslos como porcentaje del peso vivo. El peso vivo de las aves a los 21,0 días de incubación y al día 0 y 49 después de su eclosión se correlacionó de forma positiva o se interrelacionó con el SEW. Entre el día 0 y 10,5 de incubación, el MDPEWL se correlacionó de forma negativa con el peso vivo absoluto o relativo a los 21 días de incubación y con el peso vivo absoluto al día 0 después de haber eclosionado. Además, la LI se correlacionó de forma positiva con el peso vivo absoluto y relativo a los 21,0 días de incubación y al día 0 después de haber eclosionado, pero se correlacionó de forma negativa con el peso relativo de la canal (como porcentaje del peso vivo) al día 49 después de haber eclosionado. El MDPEWL durante la incubación de los huevos de estirpes modernas de pollos de carne debería monitorizarse, particularmente durante la primera mitad de la incubación, para regular la LI y el peso vivo al eclosionar, así como por su repercusión sobre el rendimiento de las canales.
Relationships of incubational hatching egg characteristics to posthatch body weight and processing yield in Ross × Ross 708 broilers

The mean daily percentage of incubational weight loss of modern strain broiler hatching eggs should be closely monitored for the regulation of length of incubation and hatchling body weight, and for their potential effects on processing yield characteristics.


Because the total life span of the modern commercial broiler has been substantially shortened, broiler development during the embryonic period has become particularly important. A better understanding of the relationships between pre- and posthatch physiological variables of modern strain broilers is important, as the characteristics of broiler hatching eggs have the potential to effect broiler posthatch growth and processing yield. The association of set egg weight (SEW), length of incubation (LI), and mean daily percentage of incubational weight loss (MDPEWL) of embryonated Ross × Ross 708 broiler hatching eggs with subsequent posthatch BW and processing yield was investigated. Sixty Ross × Ross 708 broiler hatching eggs were randomly set on each of 8 replicate tray levels of an incubator. Weight loss of individual embryonated eggs between 0 and 10.5, 10.5 and 18.5, and 0 and 18.5 d of incubation was determined for the calculation of MDPEWL. Furthermore, on 18.5 d of incubation, embryonated eggs were transferred to a hatcher unit where they were individually monitored for hatch every 12 h for determination of LI. Chicks were placed in corresponding replicate floor pens and were grown out from 0 (21.5 d of incubation) to 49 d posthatch. Live bird BW as a percentage of SEW on 21.0 d of incubation and d 0 and 49 posthatch, and bird sex on d 49 posthatch were determined. After commercial processing, carcass weight as a percentage of SEW, and carcass, abdominal fat pad, wings, breast muscle, and thighs weights as percentages of live BW were determined. Bird BW on 21.0 d of incubation and on d 0 and 49 posthatch, and bird sex on d 49 posthatch were determined. After commercial processing, carcass weight as a percentage of SEW, and carcass, abdominal fat pad, wings, breast muscle, and thighs weights as percentages of live BW were determined. Bird BW on 21.0 d of incubation and on d 0 and 49 posthatch were positively correlated or interrelated with SEW. Between 0 and 10.5 d of incubation, MDPEWL was negatively correlated with absolute and relative BW on 21.0 d of incubation and absolute BW on d 0 posthatch. Further, LI was positively correlated with absolute and relative BW on 21.0 d of incubation and d 0 posthatch, but was negatively correlated with relative (percentage of live BW) carcass weight on d 49 posthatch. The MDPEWL of modern strain broiler hatching eggs should be closely monitored, particularly during the first half of incubation, for the regulation of LI and hatchling BW and for their potential effects on processing yield characteristics.